Introduction:
A non-Euclidean geometry is learning of figures and structure that do not chart straight to any n-dimensional Euclidean system, describe by a non-vanishing Riemann curve tensor. Examples of non-Euclidean geometries contain the hyperbolic and elliptic geometry, which are difference with a Euclidean geometry. The necessary difference among Euclidean and non-Euclidean geometry is the character of parallel lines.
Behavior of lines
Three different types of geometry method to explain the difference connecting these geometries is to think double directly lines indefinitely extensive in a two-dimensional level surface that are together vertical to a three line types:
In Euclidean geometry the position remain at a stable distance starting each other, and are well-known as parallels.
In hyperbolic geometry they "curve away" starting each other, rising in distance as one moves further from the position of intersection through the general perpendicular; these lines are frequently called ultra parallels.
In elliptic geometry the positions “curve toward" each extra and finally intersect.
Models of non-Euclidean geometry
Let us see about three different types of geometry,
Elliptic geometry
The simplest type for elliptic geometry is a globe, anywhere lines are "great circles" (such as the equator or the meridians on a globe, and points reverse each other are recognized (considered to be the equal).In the elliptic type, for some certain line l and a point A, which is not on l, all position throughout A will intersect l.
Hyperbolic geometry
The pseudo globe has the suitable curve to model a section of hyperbolic space, and in a second document in the similar year, defined the Klein model, the Poincaré disk type, and the Poincaré half-plane type which type the total of hyperbolic space, and old this to explain three different types of geometry that Euclidean geometry and hyperbolic geometry be equip reliable, so that hyperbolic geometry was reasonably constant if and simply if Euclidean geometry.
Their Relationship to Each Other
Let us see about three different types of geometry,
The different geometries are divided and connected to single another in different ways. The non-Euclidean geometries are closely similar to the geometry of Euclid, but that Euclid's postulate concerning analogous lines is replace and all theorems depending on this assume are changed therefore both Euclidean and non-Euclidean geometry are models of metric geometry, in which the length of line division and the volume of position may be careful and compared.
A non-Euclidean geometry is learning of figures and structure that do not chart straight to any n-dimensional Euclidean system, describe by a non-vanishing Riemann curve tensor. Examples of non-Euclidean geometries contain the hyperbolic and elliptic geometry, which are difference with a Euclidean geometry. The necessary difference among Euclidean and non-Euclidean geometry is the character of parallel lines.
Behavior of lines
Three different types of geometry method to explain the difference connecting these geometries is to think double directly lines indefinitely extensive in a two-dimensional level surface that are together vertical to a three line types:
In Euclidean geometry the position remain at a stable distance starting each other, and are well-known as parallels.
In hyperbolic geometry they "curve away" starting each other, rising in distance as one moves further from the position of intersection through the general perpendicular; these lines are frequently called ultra parallels.
In elliptic geometry the positions “curve toward" each extra and finally intersect.
Models of non-Euclidean geometry
Let us see about three different types of geometry,
Elliptic geometry
The simplest type for elliptic geometry is a globe, anywhere lines are "great circles" (such as the equator or the meridians on a globe, and points reverse each other are recognized (considered to be the equal).In the elliptic type, for some certain line l and a point A, which is not on l, all position throughout A will intersect l.
Hyperbolic geometry
The pseudo globe has the suitable curve to model a section of hyperbolic space, and in a second document in the similar year, defined the Klein model, the Poincaré disk type, and the Poincaré half-plane type which type the total of hyperbolic space, and old this to explain three different types of geometry that Euclidean geometry and hyperbolic geometry be equip reliable, so that hyperbolic geometry was reasonably constant if and simply if Euclidean geometry.
Their Relationship to Each Other
Let us see about three different types of geometry,
The different geometries are divided and connected to single another in different ways. The non-Euclidean geometries are closely similar to the geometry of Euclid, but that Euclid's postulate concerning analogous lines is replace and all theorems depending on this assume are changed therefore both Euclidean and non-Euclidean geometry are models of metric geometry, in which the length of line division and the volume of position may be careful and compared.