Thursday, January 31, 2013

Set-builder Notation Online Help

Introduction:

Set-builder notation is a mathematical data for concerning a set by stating the property that the members of the set must suit. The terms "things" in a set is known as the "elements", and are listed inside curly braces. In online study, many websites provides free help on set builder notation questions. In online study, students can learn more about all topics. Practicing set-builder notation problems help students to get prepared for test preparation and exam preparation. Practicing these problems helps student to get good scores in test and exams. In this article, we are going to see about, set-builder notation online help.I like to share this Surface Area Triangular Prism with you all through my article.

Set-builder Notation Online Help: - Representation of Set-builder Notation

The set {x: x < 3} is stated as, "the set of all x such that x is less than 0." The other form of representation of set-builder notation is the vertical line, {x | x < 3}.

General Form: {formula for elements: restrictions} or {Method for elements| restrictions}

{X: x ≠ 5} the set of all real numbers except 5

{X | x < 15} the set of all real numbers less than 15

{X | x is a positive integer} the set of all real numbers which are positive integer

{n + 1: n is an integer} The set of all real numbers (e.g. ..., -2, -1, 1, 2, 3...)

Understanding help on math homework for free is always challenging for me but thanks to all math help websites to help me out.

Set-builder Notation Online Help: - Examples

Example 1:

Express the following in set-builder notation: Y = {45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60}

Solution:

The set-builder notation for the given problem is given as,

Y = {45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60}

{ Y| Y `in` R, 44 < Y < 61}

Example 2:

Write the set of even numbers between 10 and 30 in set-builder notation.

Solution:

The set-builder notation for the given problem is given as,

X = {10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}

{X|X `in`   even numbers, 10 `<=` X `<=` 30 }

No comments:

Post a Comment