Showing posts with label Line Segment. Show all posts
Showing posts with label Line Segment. Show all posts

Tuesday, March 19, 2013

Geometry Definitions

That branch of mathematics which investigates the relationship, properties, and measurement of solids, surfaces, lines, and angles; the science which treats of the properties and relations of magnitudes; the science of the relations of space.


Line


In geometry a line:

·         is straight (no curves),

·          has no thickness, and

·         extends in both directions without end (infinitely)


Line segment:


If it does have ends it would be called a "Line Segment".

"Line" normally means straight, so say "curve" if it has a curve.

The word "segment" is significant, because a line normally extends in both directions without end.


angle-angle-angle (AAA) similarity


The amount of turn between two straight lines that have a common end point (the vertex). An acute triangle is a triangle with all angles lesser than 90 degrees.

The angle-angle-angle (AAA) relationship test says that if two triangles have corresponding angles that are congruent, then the triangles are similar. Because the sum of the angles in a triangle must be 180°, we really only need to know that two pairs of corresponding angles are congruent to know the triangles are similar.

The centroid of a triangle is the point where the three medians meet. This point is the center of mass for the triangle. If you cut a triangle out of a piece of paper and put your pencil point at the centroid, you could balance the triangle.Having problem with Surface Area Sphere keep reading my upcoming posts, i will try to help you.


Congruent


Two figures are congruent if all corresponding lengths are the equal, and if all corresponding angles have the same measure. Colloquially, we say they "are the same size and shape," though they may have different orientation. (One might be rotated or flipped compared to the other.)

Monday, November 19, 2012

Trisecting a Line Segment

Introduction for line segment:

A line segment is the basic and fundamental topic in geometry and math subject. Generally in math, a straight and long line is divided with two definite end points on both sides are known as line segments. Here in this article we have to brief explain about line segment and trisecting a line segment. And use dome example figures for how to do trisecting line segment.

Line Segment General Definition:

In math, a line segment is can be defined as one small part or distance between the two endpoints of a long line.
Line segment is also shape like as ‘a straight line’, which is joining the two points with coordinates, and the line is infinity after that, the end points.
Example figure for general line segment:



In this figure xy is the infinity line, and A, B are the two end points, and the line segments are` bar (AB)` .
The length of the line segments AB would be written as `bar (AB)` . And the line segments have used the name as to be two end points AB.

Trisecting a Line Segment:

Trisecting a line segment is the one of the process of dividing the line segments with a new line and makes the new line segments.  It is simply defined as which is one line segment, is trisected.

First we have to draw a line segment, and then bisect the line segment with a new line, and then we have to get trisecting line segment.

Generally trisecting a line segment, we use compass and ruler and makes easy.

Step by step process for trisecting line segment:

Step 1:

First we have to draw a line segment with two end points A, B. And name of the line segment is AB.

Stwp2:

Then next, draw a new dotted line through endpoint A, but not coincident with AB, draw that line for our convenient and put an end point with the name of  C and D.

Step 3:

Here the line segment distances of AC and AD are equal.

Step 4:

Then again draw a dotted line through End point B, same length and put end points and named as E and F.

This E and F are opposite lines for AB from points C and D. distance BE = EF.

Step 5:

Connect CF and DE; those two lines will cut AB into third lines equal.

Example figure for trisecting line segment:



The above example figure and explanations will make clears for the trisecting a line segment.

Monday, November 5, 2012

Line Segment Circle Intersection

Introduction:
A line can intersect a circle at two points or it can touch the circle at one point or never pass throught.

To find the point of intersection of line segment with a circle, we need to solve both equations. Thus we can get two points of intersection of the line with the circle.

Let us see few problems of this kind.

Example Problem on Line Segment Circle Intersection.

Ex 1: Find the point of intersection of the line 2x + y = 1 and x 2 + y 2 = 1.

Soln: Given: The line is 2x + y = 1 ……….. (1)

The circle is x 2 + y 2 = 1…………… (2)

(1) `=>` y = 1 – 2x

Therefore (2) = x 2 + (1 – 2x) 2 = 11 `=>` x 2 + 1 + 4x 2 – 4x = 11

`=>` 5x 2 – 4x – 10 = 0

Therefore x = `[4+- sqrt [(-4) ^2 ** 4(5) (-10)]] / [2 (5)]`

=` [4 +- sqrt [16 + 200]] / 10`

= `[4 +- sqrt 216] / 10`

=` [4 +- 6 sqrt 6] / 10` 

= `[2 +- 3 sqrt 6] / 5`

Therefore y = `1 ** [2 [(2 + 3 sqrt 6) / 5]]`

= `[5 ** 4 ** 6 sqrt 6] / 5`

= `[1 ** 6 sqrt 6] / 5`

When x = `[2 + 3 sqrt 6] / 5` , y = `[1 ** 6 sqrt 6] / 5`

When x = `[2 ** 3 sqrt 6] / 5` , y = `1 ** [2 [2 ** 3 sqrt 6] ]/ 5`

y =`[ 5** 4 + 6 sqrt 6 ]/ 5` = `[1 + 6 sqrt 6 ]/ 5`

Therefore the point of intersections are given by (`[2 + 3 sqrt 6] / 5` , `[1 ** 6 sqrt 6] / 5` ) and (`[2 ** 3 sqrt 6] / 5` , `[1 + 6 sqrt 6] / 5` )


Example Problem on Line Segment Circle Intersection.

Ex 2: Find the point of intersection of the following line and the circle. x – y = 1, x 2 + y 2 + 4x + 2y + 2 = 0.

Soln: Given: x– y = 1   =  x = y + 1 ……….. (1)

x2 + y 2 + 4x + 2y + 2 = 0 ………... (2)

By using (1) in (2), we get (y + 1) 2 + y 2 + 4 (y + 1) + 2y + 2 = 0

`=>` y 2 + 2y + 1 + y 2 + 4y + 4 + 2y + 2 = 0

2y 2 + 8y + 7 = 0

y =`[ -8 +- sqrt[ 8 ^2 ** 4 (2) (7)]] / [2 (2)]`

= `[-8 +- sqrt 64 ** 56] / 4`

=` [-8 +- 2 sqrt 2] / 4`   =`[-4 +- sqrt2]/2`

Therefore y = `[- 4 + sqrt 2 ]/ 2` , (1)  `=>` x =` [-4 + sqrt 2 ]/ 2` + 1

= `[- 2 + sqrt 2] / 2`

y =` [-4 ** sqrt 2] / 2` , (1) `=>` x =` [-4 ** sqrt 2] / 2` + 1 = `[-2 ** sqrt 2 ]/ 2`

Therefore the points are (`[-2 + sqrt 2] / 2` , `[-4 ** sqrt 2] / 2` )