Thursday, January 24, 2013

Naming Lines in Geometry

Introduction for naming lines in geometry:
Lines are one dimension straight geometry figure and in solid geometry lines are used in designs.A lines are start with the one end and end with one direction then it said to be line segment.Lines are classified into many types which depends upon the line projection.Line segment is denoted with a connected piece of line.line segments names  has two endpoints and it is named by its endpoints. In this article contains naming lines in geometry I like to share this Area of a Rhombus Formula with you all through my article.

Naming Lines in Geometry:

In naming lines geometry section we have many types of lines which has propertyof its own.Lines are classified into following types.

Parallel lines:
In geometry parallel lines are mostly aplicable in design section, two lines which does not touch each other are called parallel lines.

Perpendicular lines:
In geometry Perpendicular lines are mostly aplicable drawing section,Two line segment  that form a L shape are called perpendicular lines.

Intersecting lines:
If two lines intersect at a point, these lines are called intersecting lines.

Concurrent lines:
The three or more lines passing through the same point are called concurrent lines. Understanding math help live is always challenging for me but thanks to all math help websites to help me out.

Problems in Naming Lines Geometry:

Example 1:
Find co-ordinate of the mid point of the line segment joining given points A(-4,1) and B(5,4)

Solution:
The required mid point is
Formul a   `((x_1+x_2)/2 ,(y_1+y_2)/2)` here,  (x1, y1) = (-4,1),(x2, y2) = (5,4)

=  `((-4+5)/(2))``((1 +4)/(2)) `

= `(-1/2) ` ,  ` (5/2)`


Example 2:
Find the slope of the lines given (1,-3) and (-1,3)

Solution:
(x1,y1)= (1,-3), (x2,y2)= (-1,3).
We know to find slope of line,m=` (y_2-y_1) /(x_2-x_1)`

=`(3+3)/(-1-1)`

m =`6/-2` = -3

Example 3:
Find the equation of the line having slope 5 and y-intercept -1.

Solution:
Applying the equation of the line is y = mx + c
Given,       m =5 ,c = -1
y = 5 x -1

or  y = 5x - 1
or  5x- y +1 = 0.

Tuesday, January 22, 2013

Plot Points

Introduction:

A rectangular co-ordinate system, or Cartesian plane, is a set of two intersect and vertical axes forming a xy plane. The horizontal axis is generally labelled the x-axis and the vertical axis is generally labelled the y-axis. The two axes split the planes into four parts known as quadrants. Any point on the plane communicate to an ordered pair (x, y) of valid numbers x and y.

Types of Plot Points:

Line plot
Scatter plot
Stem and Leaf Plot
Box plot
Line plot: A line graph plots constant data as points and then joins them with a line. Multiple data sets can be graphed simultaneously, but a key have to be used.

Scatter plot: A scatter plot defined as the organization between the two factors of the testing. A line which is used to find the positive, negative, or no correlation.

Stem and Leaf Plot: Stem and leaf plot points are defined as the documentation data values in rows, and can easily be made into a histogram. Large information sets can be accommodated by splitting stems.

Box plot: A box plot points are defined as a concise graph screening the five point abstract. Multiple box plots can be drawn side by side to evaluate more than one information set.

Advantages and Disadvantages of Plot Points:

Line plot

Advantages:

Immediate analysis of data.

Shows variety, minimum & maximum, gaps & clusters, and outliers simply.

Accurate values retained.

Disadvantages:

Not as visually attractive.

Top for below 50 data values.

Desires small range of data.

Scatter plot

Advantages:

Shows a movement in the data connection.

Retains accurate data ideals and example size.

Shows lowest/highest and outliers.

Disadvantages:

Hard to imagine outcome in huge data sets.

Flat drift line gives indecisive results.

Stem and Leaf Plot


Advantages:

Concise symbol of data.

Shows range, smallest & highest, gaps & clusters, and outliers simple.

Can hold very large data set.

Disadvantages:

Not visually attractive.

Does not simply indicate events of centrality for huge data sets.

Box plot

Advantages:

Shows 5-point review and outliers.

Simply compare two or supplementary information sets.

Handles extremely large data sets easily.

Disadvantages:

Not as visually attractive as extra graphs.

Accurate values not retained.

Sunday, January 20, 2013

Surface Area of a Box

Introduction to surface area of a box:
Box is same as the cuboid. In box the dimensions are length, width and height. If all the dimensions are equal then the box is cube and if it is different then the box is cuboid. Box is a 3 dimensional image. A box has 8 vertices, 12 edges and 6 faces. Understanding Area of a Hexagon is always challenging for me but thanks to all math help websites to help me out.

Diagram and Formula – Surface Area of a Box:
Surface area of a box = 2(1w+lh+wh)

Where w`=>` width of the box

h`=>` height of the box

l`=>` length of the box. Is this topic how to construct parallel lines hard for you? Watch out for my coming posts.

Example Problems – Surface Area of a Box:

Example 1 :

Find the surface area of a box whose length, width and height are 12cm, 14cm, 16cm.

Solution:

Given that,

Length of the box = 12cm

Width of the box = 14cm

Height of the box=16cm.

Surface area of a box = 2(lw + lh + wh)

=2((12*14) +(12*16)+(14*16))

=2(168+192+224)

=2(584)

=1168cm3.

Example 2 :

Find the surface area of a box whose length, width and height are 2cm, 4cm, 6cm.

Solution:

Given that,

Length of the box = 2cm

Width of the box = 4cm

Height of the box=6cm.

Surface area of a box = 2(lw + lh + wh)

=2((2*4) +(2*6)+( 4*6))

=2(8+12+24)

=2(44)

=88cm3.

Example 3 :

Find the surface area of a box whose length, width and height are 8cm, 6cm, 4cm.

Solution:

Given that,

Length of the box = 8cm

Width of the box = 6cm

Height of the box=4cm.

Surface area of a box = 2(lw + lh + wh)

=2((8*6) +(8*4)+(6*4))

=2(48+32+24)

=2(104)

=208cm3.

Example 4 :

Find the surface area of a box whose length, width and height are 10cm, 20cm, 30cm.

Solution:

Given that,

Length of the box = 10cm

Width of the box = 20cm

Height of the box=30cm.

Surface area of a box = 2(lw + lh + wh)

=2((10*20) +(10*30)+(20*30))

=2(200+300+600)

=2(1100)

=2200cm3.