Sunday, January 20, 2013

Surface Area of a Box

Introduction to surface area of a box:
Box is same as the cuboid. In box the dimensions are length, width and height. If all the dimensions are equal then the box is cube and if it is different then the box is cuboid. Box is a 3 dimensional image. A box has 8 vertices, 12 edges and 6 faces. Understanding Area of a Hexagon is always challenging for me but thanks to all math help websites to help me out.

Diagram and Formula – Surface Area of a Box:
Surface area of a box = 2(1w+lh+wh)

Where w`=>` width of the box

h`=>` height of the box

l`=>` length of the box. Is this topic how to construct parallel lines hard for you? Watch out for my coming posts.

Example Problems – Surface Area of a Box:

Example 1 :

Find the surface area of a box whose length, width and height are 12cm, 14cm, 16cm.

Solution:

Given that,

Length of the box = 12cm

Width of the box = 14cm

Height of the box=16cm.

Surface area of a box = 2(lw + lh + wh)

=2((12*14) +(12*16)+(14*16))

=2(168+192+224)

=2(584)

=1168cm3.

Example 2 :

Find the surface area of a box whose length, width and height are 2cm, 4cm, 6cm.

Solution:

Given that,

Length of the box = 2cm

Width of the box = 4cm

Height of the box=6cm.

Surface area of a box = 2(lw + lh + wh)

=2((2*4) +(2*6)+( 4*6))

=2(8+12+24)

=2(44)

=88cm3.

Example 3 :

Find the surface area of a box whose length, width and height are 8cm, 6cm, 4cm.

Solution:

Given that,

Length of the box = 8cm

Width of the box = 6cm

Height of the box=4cm.

Surface area of a box = 2(lw + lh + wh)

=2((8*6) +(8*4)+(6*4))

=2(48+32+24)

=2(104)

=208cm3.

Example 4 :

Find the surface area of a box whose length, width and height are 10cm, 20cm, 30cm.

Solution:

Given that,

Length of the box = 10cm

Width of the box = 20cm

Height of the box=30cm.

Surface area of a box = 2(lw + lh + wh)

=2((10*20) +(10*30)+(20*30))

=2(200+300+600)

=2(1100)

=2200cm3.

Thursday, January 17, 2013

Two Parallel Lines Cut by a Transversal

Introduction to two parallel lines cut by a transversal:

Parallel lines:

Two lines on a plane that never  intersect or meet is known as parallel lines. The distance between both the lines must be the same. And they must not intercept with each other. It can also be explained as the length between parallel lines will be exactly same at any point. Examples of parallel lines are railway track, etc.

Transversal:

A straight line is said to be transversal if the line cuts two or more parallel lines at different points. In the figure the line l cuts the parallel lines a and b. So the line l is called as a transversal line

Two Parallel Lines Cut by a Transversal:

When two parallel lines are cut by a transversal then

The corresponding angles are equal

Pair of Vertically Opposite angles is equal

Pairs of Alternate interior angles are equal

Interior angles on same side are supplementary

Conditions Satisfies when Two Parallel Lines Cut by a Transversal:

The corresponding angles formed by the transversal will be equal. For example angle 4 and angle 6 are corresponding angles, and the other pairs of corresponding angles are (5 and 3), (8 and 2) and (1 and 7).

Therefore we have:               angle 6 = angle 4

angle 5 = angle 3

angle 8 = angle 2

angle 7 = angle 1

Pair of Vertically Opposite angles is equal

The pair of vertically opposite angles is equal when a transversal line is formed. For example, angle 1 and angle 3 are vertically opposite angles and the other pairs of vertically opposite angles are (2 and 4), (5 and 7) and (6 and 8).

Therefore we have:                angle 1 = angle 3

angle 2 = angle 4

angle 5 = angle 7

angle 6 = angle 8

Pairs of Alternate interior angles are equal

The pair of alternate angles is equal when the transversal line is formed. Here the pairs (2 and 6) and (3 and 7) are alternate interior angles. I have recently faced lot of problem while learning simple math problems for kids, But thank to online resources of math which helped me to learn myself easily on net.

Therefore we have:                angle 2 = angle 6

angle 3 = angle 7

Interior angles on same side are supplementary

Interior angles on same side are supplementary when a transversal is formed. The angles on the same side of the transversal are (6 and 3) and (2 and 7).

Therefore we have:                angle 3+ angle 6 = 180

angle 2 + angle 7 = 180

Tuesday, January 15, 2013

Radius from Circumference

Introduction to radius from circumference:
In day to day life, we often came across some unique math terms. Radius is one of the special math terms that falls under this category.

Radius of a circle is nothing but the line segment from the center of the circle to its perimeter. In other terms, half the diameter is the radius.

In this article of radius from circumference, we are going to find the radius of the circle from the circumference formula.

Formula for Radius from Circumference:

The Circumference of the circle is given by the following formula:

Circumference =  2`pi`r

If the Circumference C is given, the radius can be calculated by the following formula:

radius  =  `C/(2 pi)`

Example Problems for Finding Radius:
Example 1:

Find the radius, if the circumference of the circle is 100 cm

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `100 / (2 * 3.14)`

=  `100 / 6.28`

=  15.92 cm

Example 2:

Find the radius, if the circumference of the circle is 94 cm

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `94 / (2 * 3.14)`

=  `94 / 6.28`

=  14.97 cm

Example 3:

Find the radius, if the circumference of the circle is 60 mm

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `60 / (2 * 3.14)`

=  `60 / 6.28`

=  9.55 mm

Example 4:

Find the radius, if the circumference of the circle is 35 cm

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `35 / (2 * 3.14)`

=  `35 / 6.28`

=  5.57 cm

Example 5:

Find the radius, if the circumference of the circle is 20 mm

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `20 / (2 * 3.14)`

=  `20 / 6.28`

=  3.18 mm

Example 6:

Find the radius, if the circumference of the circle is 4 m

Solution:

Radius of circle, r  =  `C / ( 2 pi )`

=  `4 / (2 * 3.14)`

=  `4 / 6.28`

=  0.64 m


Practice Problems for Finding Radius:

1) Find the radius, if the circumference of the circle is 50 cm

Answer: 7.96 cm

2) Find the radius, if the circumference of the circle is 20 m

Answer: 3.18 m

3) Find the radius, if the circumference of the circle is 110 mm

Answer: 17.52 mm

4) Find the radius, if the circumference of the circle is 75 cm

Answer: 11.94 cm

5) Find the radius, if the circumference of the circle is 72 mm

Answer: 11.46 mm

Wednesday, January 9, 2013

Geometry Edge of Rectangular

Introduction to Geometry edge of rectangular:

Rectangular shape is one of the geometry two dimensional objects. Geom`etry edge of rectangular properties are the crossed quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals. Its angles are not right angles. Opposite sides are parallel and congruent . The diagonal bisect each other The diagonals are congruent. A four -sided plane figure with four right angles. Understanding Volume of a Rectangular Prism Formula is always challenging for me but thanks to all math help websites to help me out.

Basic Concepts of Geometry Edge of Rectangular:

Geometry edge of rectangular:

Each and every object should have edges. Two edges make the angle of geometry object.And also edges to make the corners and vertices of object .Rectangle have  four  edges and also have four vertices or corners .Each corner make the angle of 90degree.

From this diagram:

AB, BD, DC, AC are edges of the rectangle.

AB edge is parallel to CD edge

AC edge is parallel to BD edge

AB || CD, AC || BD (opposite sides are equal in rectangle)

Each edge should make the angles are


Please express your views of this topic how many edges does a rectangular prism have by commenting on blog.

Area and Perimeter of the Geometry Edge of Rectangular:

Area and perimeter:

Area of rectangle= Length * Width

Perimeter of the rectangle=2(Length + Width)

Both area and perimeter are depends on the rectangle edges.

A rectangle has two Length edges and two width edges.

Length edges are AB, CD

Width edges are BD, AC

Two length edges are equal AB=CD

Two width edges are equal BD=AC

Example problems in Geometry edge of rectangular:

1.From given diagram Find the area and perimeter of the rectangle  and name of the rectangular edges?

Solution:

Given data PQRS is closed rectangle

PQ= 13cm(PQ||SRsO P)

PQ=SR=13

QR=5.5cm(QR||PS)

So QR=PS=5.5

Length   of the rectangle=13

Width of the rectangle =5.5

Finding the area:

(1  )Area of the rectangle=Length x Width

= 13x5.5

Area =71.5cm2

(2) Finding the perimeter:

Perimeter of the rectangle=2( L+W)

=2(13+5.5)

=2(18.5)

=37cm

Perimeter=37

(3)Finding the name of the edges:

From given diagram edges are PQ,QR,RS,SP

Monday, January 7, 2013

Volume of Equilateral Triangle

Introduction

In geometry, an equilateral triangle is a triangle in which all three sides are equal. In traditional or Euclidean geometry, equilateral triangles are also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. They are regular polygons, and can therefore also be referred to as regular triangles.As, equilateral triangle is two dimensional, it is impossible to determine its volume.So, lets know how to determine volume of the prism with equilateral triangular base.

(Source -wiki)






Formula for Volume of Equilateral Triangle Base Prism:

The volume of equilateral triangle, ` v = 1/3 B xx H`

Example for Volume of Equilateral Triangle Base :

Example 1. Find the volume of equilateral triangle base prism of side 10 cm and height `17/2 cm`

Solution:

Let, H = `17/2 cm` , B = 10cm

Formula used:  ` V = 1/3 B H`

Therefore, volume of equilateral triangle base prism ,

`V = 1/3 xx 10 xx 17/2` = `85/3 cm3`

Example2. Find the volume of equilateral triangle base prism of side 100 m and height 85 m

Solution:

Let, `H = 17/2 m` , B = 10 m

Formula used: ` V = 1/3 B H`

Therefore, volume of equilateral triangle base prism,

`V = 1/3 xx 10 xx 17/2`

= 2833.33 m3

Example3. Find the volume of equilateral triangle base prism of side 9 cm and height `15/2` cm

Solution:

Let, `H = 15/2 cm` , B = 9 cm

Formula used:   `V = 1/3 B H`

Therefore, volume of equilateral triangle base prism ,

`V = 1/3 xx 9 xx 15/2`

= `45/2` cm3

Example4. Find the volume of equilateral triangle base prism of side 90 cm and height 75 cm

Solution:

Let, H = 75cm, B = 90 cm

Formula used:      `V = 1/3 B H`

Therefore, volume of equilateral triangle base prism ,

`V = 1/3 xx 90 xx 75`

= 2250 cm3



Practice Problems Volume of Equilateral Triangle Base Prism

1. Find the volume of equilateral triangle base prism of side 180 m and height 156 m

2. Find the volume of equilateral triangle base prism of side 450 cm and height 390 cm

Solution for practice problems of volume of equilateral triangle base prism :

1. 9360 m3

2. 58500cm3

Tuesday, January 1, 2013

Understanding the Concepts of Set Theory Using Venn Diagram

Sets can be termed as a collection of objects. The objects must be similar in nature. In mathematics, the objects must be related to the mathematical world. The set theory can be understood with the help of diagrammatically explanation. The Venn diagram example can be used for this purpose. The Venn diagram questions relate to the set theory and can help one to understand the set theory better. So, basically set theory can be best understood with the help of these. The definition of Venn diagram states that they are diagrams depicting sets and the operations on them. The operation on sets can be easily explained with the help of these. Once the definition has been understood the same concept can be used for the solving of the problems. The problems can be easily solved once the concept is clear.

The picture of a Venn diagram represents sets pictorially and helps in solving the operations on it. The various operations on sets include Union and intersection. The Venn diagram symbols have to be learnt first and then the whole thing can be implemented. There can problems on how to find the union or intersection of two sets. The union of sets will result in a set which will contain all the elements present in both the sets and the intersection will contain only those elements which are common to both the sets. The diagram will show the common area between the sets. This common area will denote the intersection of the sets. There can be also special type of sets in set theory. Some of them are empty set or unit set. When the intersection of two sets does not have a common area it means that there are no common elements between and the resultant set is an empty set. In the unit set there will be only one element.Please express your views of this topic how many faces does a triangular prism have by commenting on blog.

There can sets to include the various elements and can be named by the elements present in them. There are natural number sets or whole number sets. There are also sets containing the real numbers and the rational numbers. Complex numbers can also have sets in their name which will contain the collection of complex numbers. The square root of a negative number can be an example of a complex number. The number of elements in a set is denoted by the term called cardinality.

Monday, December 31, 2012

Plug in and Solve Parabolas

Introduction to Plug in and Solve Parabolas:

A curve which is formed by the intersection of a right circular cone and half of the circle is called as parabola. Directrix of a parabola is a set of all points located at same distance from a fixed line. The fixed point is called as focus and not on the directrix. The midpoint between focus of a parabola and vertex of a parabola is called as vertex. A line passing through vertex and focus of a parabola is called as axis of symmetry. Finding the above four criteria by solving parabola equation. Let us see about plug in and solve parabolas in this article.

Worked Examples to Plug in and Solve Parabolas

The general form the parabolic curve is` y = ax^(2) + bx + c` or `y^(2) = 4ax` . Substitute the above formula to find the vertices, latus rectum, focus and axis of symmetry.

Example 1 for Plug in and Solve Parabolas – Vertex:

Find the vertex of a parabola equation `y = x^ (2) + 4x + 3` .

Solution:

Given parabola equation is `y = x^ (2) + 4x + 3` .

To find the vertices of a given parabola, we have to plug `y = 0` in the above equation, we get,

` 0 = x^ (2) + 4x + 3`

Now we have to factor the above equation, we get,

So `x^ (2) + x + 3x + 3 = 0`

`x(x + 1) + 3 (x + 1) = 0`

`(x + 1) (x + 3) = 0`

From this `x + 1 = 0` and `x + 3 = 0`

Then `x = - 1` and `x = - 3`

So, the vertices of given parabola equation is` (-1, 0)` and `(-3, 0)` .

Example 2 for Plug in and Solve Parabolas – Focus:

What is the focus of the following parabola equation `y^ (2) = 8x` ?

Solution:

Given parabola equation is `y^ (2) = 8x` is of the form y`^ (2) = 4ax`

We know that the formula for focus, `p = 1 / (4a)`

Now compare the given equation y2 = 8x with the general equation `y^ (2) = 4ax` . So, that `4a = 8`

From this,` p = 1 / (4a) = 1 / 8`

So, the focus of a parabola equation is `(0, 1/8)` .

Other Example Problems to Plug in and Solve Parabolas

Example 3 for Plug in and Solve Parabolas – Axis of Symmetry:

What is the axis of symmetry for parabola equation `y = 5x^ (2) + 15x + 12` `?`

Solution:

Given parabola equation is `y = 5x^ (2) + 15x + 12`

From the above equation, plug `a = 5` and `b = 15` in the axis formula.

So the axis of the symmetry of the given parabola is `-b/ (2a) = - 15/ (2 xx 5) = -15/10 = - 3/2`

Therefore, the axis of symmetry for a given parabolic curve equation is` -3/2` .

Example 4 for Plug in and Solve Parabolas – Latus Rectum:

Find the latus rectum of the given parabola equation `y^ (2) = 12x` .

Solution:

The given parabola equation is `y^ (2) = 12x`

To find the latus rectum, we have to find the value of` p` .

The parabola equation is of the form `y^ (2) = 4ax`

Here `4a = 12`

So, `p = 1/ (4a) = 1/12`

The formula for latus rectum is `4p` .

Plug the value for `p =1/12` in the latus rectum formula.

From this, the latus rectum of the parabola is `= 4p = 4 (1/12) = 4/12 = 1/3`

Therefore, the latus rectum for the parabola equation is `1/3` .