Monday, February 11, 2013

Base Pentagon Prism

Introduction:-
In geometry, the pentagonal prism is a prism with a pentagonal base.

Pentagonal prism is a type of heptahedron.

If faces are all regular, the pentagonal prism is a semi regular polyhedron and the third in an infinite set of prisms formed by square sides and two regular polygon caps.

A pentagonal prism has                                                                                                                                                                         Source:- Wikipedia.

7 faces
10 vertices
15 edges.
The pentagonal prism looks like .


Formulas For Pentagonal Prism:-


`Base area = 5/ 2 * a * s`
`Base perimeter = 5s`
`Prisms Surface area = 5as + 5sh.`
`Volume of Prism = (5/2)ash`
`here`
`a = apothem Leng th,`
`s = side,`

`h = height.`

Please express your views of this topic Congruence of Triangles by commenting on blog.

Problems on Prism:-


Problem 1:-

Find the base area  and base perimeter of the pentagonal prism if the apothem length is 4 and the side is 2.

Solution:-

Given

The apothem, length is 4

The side is 2.

The formula that is used to calculate the area of the base is `5/ 2 a* s.`

By plugging in the values of  a and s in the formula we get

Area of the base = `5/ 2` * 4 * 2.

By crossing 2 and 2 in the above equation we get

Area of the base = 5 * 4 = 20.square units.

The formula that is used to find the base perimeter is  `5s` .

By plugging in the given values we get

Base perimeter = 5 * s = 5 * 2 = 10.

Problem 2:-

Find the base area  and base perimeter of the pentagonal prism if the apothem length is 6 and the side is 4.

Solution:-

Given

The apothem, length is 6

The side is 4.

The formula that is used to calculate the area of the base is` 5/ 2 a* s.`

By plugging in the values of  a and s in the formula we get

Area of the base = `5/ 2 * 6 * 4.`

By crossing 2 and 4 in the above equation we get

Area of the base = 5 * 12 = 60.square units.

The formula that is used to find the base perimeter is  `5s.`

By plugging in the given values we get

Base perimeter = 5 * s = 5 * 4 = 20.

Problem 3:-

Find the base area and base perimeter of the pentagonal prism if the apothem length is 5 and the side is .

Solution:-

Given

The apothem, length is 5

The side is 7.

The formula that is used to calculate the area of the base is `5/ 2 a* s.`

By plugging in the values of  a and s in the formula we get

Area of the base = `5/ 2 * 5 * 7.`

Area of the base = `175/ 2` square units.

The formula that is used to find the base perimeter is  5s.

By plugging in the given values we get

Base perimeter = 5 * s = 5 * 7 = 35.

No comments:

Post a Comment