Tuesday, February 12, 2013

Construction of Triangles

Introduction to construction of triangles:

The triangles can be constructed if the following requirements are given such as follows,

The measurement of three sides should be given (or)

The measurement of the two sides and the included angle should be given (or)

The measurement of a side and any two angles should be given.

Now we are going to see about the construction of triangles. Is this topic Scalene Triangles hard for you? Watch out for my coming posts.


Construction of triangles:


Construction of triangles if three sides are given:

Construct a triangle if three sides are given with x, y and z measurements.

Steps of construction:

First a line segment QR of x cm length should be drawn.

With Q as center and radius of y cm be drawn and it equals to PQ and draw an arc of a circle.

With R as center and radius of PR = z cm and draw an arc and it will intersects at the first arc of point P.

Now join the points of line segments PQ and PR.

Thus, PQR is a required triangle. I have recently faced lot of problem while learning Geometry Definition, But thank to online resources of math which helped me to learn myself easily on net.

Other constructions of triangles:

Construction of triangles if two sides and angle are given:

Construct a triangle if two sides and an angle are given.

Steps of Construction:

First we have to draw a ray of QX of some length.

With the help of protractor measure the given angle and draw the line to meet Q.

The ray QY which may cut line segment QR of x cm.

The ray QY which may cut the line segment QP of y cm.

Now we can join the two points P and R.

Thus, PQR is the required triangle.

Construction of triangles if two angles and Side are given:

Construct a triangle if two angles and a side are given.


Steps of Construction:

First we should draw the line segment of QR of given length.

With the help of the protractor measure the given angle at RQX

Then, draw QRY for the given angle such that XY lie on the same side of the PQ.

Then, label the point where it intersects at QX and QY as P.

Thus, the PQR is the required triangle.

No comments:

Post a Comment