Sunday, April 14, 2013

Minutes in Geometry

There are several ways to measure the size of an angle. One way is to use units of degrees. (Radian measure is another way.) In a complete circle there are three hundred and sixty degrees.

An angle could have a measurement of 35.75 degrees. That is, the size of the angle in this case would be thirty-five full degrees plus seventy-five hundredths, or three fourths, of an additional degree. Notice that here we are expressing the measurement as a decimal number. Using decimal numbers like this one can express angles to any precision - to hundredths of a degree, to thousandths of a degree, and so on.

There is another way to state the size of an angle, one that subdivides a degree using a system different than the decimal number example given above. The degree is divided into sixty parts called minutes. These minutes are further divided into sixty parts called seconds. The words minute and second used in this context have no immediate connection to how those words are usually used as amounts of time.


Symbols used


In a full circle there are 360 degrees. Each degree is split up into 60 parts, each part being 1/60 of a degree.  These parts are called minutes. Each minute is split up into 60 parts, each part being 1/60 of a minute. These parts are called seconds.

There are symbols that are used when stating angles using degrees, minutes, and seconds. Those symbols are show in the following table.
Symbol for degree:  º
Symbol for minute:   '
Symbol for second:  "

Understanding equation for square root is always challenging for me but thanks to all math help websites to help me out.

Example


So, the angle of 40 degrees, 20 minutes, 50 seconds is usually written this way:

How could you state the above as an angle using common decimal notation? The angle would be this many degrees, (* means times.):
40 + (20 * 1/60) + (50 * 1/60 * 1/60)

That is, we have 40 full degrees, 20 minutes - each 1/60 of a degree, and 50 seconds - each 1/60 of 1/60 of a degree.

Work that out and you will get a decimal number of degrees.  It's 40.34722 º

Thursday, April 11, 2013

Geometry in Our World

Introduction to geometry in our world

Geometry is one of those subjects that make students wonder when they will ever use it again. Yet, it has many applications in daily life in our world.


Geometry is especially useful in home building or improvement projects. If you want to find the floor area of a house, you use geometry. This information is useful for laying carpet or tiles and for telling an estate agent how big your house is when you want to put it on the market. If you want to reupholster a piece of furniture, you have to estimate the amount of fabric you need by calculating the surface area of the furniture.

Please express your views of this topic Find Equation of a Line by commenting on blog.

Applications of geometry in our world


Geometry also has applications in our world in hobbies.  The water in a goldfish tank needs to have a certain volume as well as surface area in order for the fish to thrive. You can calculate it using geometry. Pastimes like quilting and other design projects use geometry extensively. Understanding how the shapes of a quilt block fit together is dependent on geometry; so is determining the amount of fabric you need.

Understanding free online math solver is always challenging for me but thanks to all math help websites to help me out.

Geometry in daily life in our world


Geometry plays an important role in every day life. For example, geometry is used in the planning and making of buildings, roads, bridges and houses. Geometrical tools are utilized in making maps and it aids a lot in exploring distances. Geometry is mostly used in drawings, sewing,mathematics,architecture, measurements and so on. It is also used in space, engineering, fashion designing etc.

One  biggest use of geometry is for coordinate transformation (rectangular to polar or vice versa). Many of the applications  you mention make more use of rules of thumb and/or formulas or tables that have been worked out on the basis of geometry. The underlying geometry may be used only rarely.

Sunday, April 7, 2013

USE OF GEOMETRY IN DAILY LIFE

Geometry is the one of the subject that make students wonder when they will ever use it again .yet; it has many applications in daily life.

Geometry is especially used in home building or improvement projects .if you want to find the floor area of a house, you can use geometry. These information is useful for telling an estate , how big your house is when you want to put it on the market .if you want to purchase a piece of wood ,you have to estimate the amount of varshines you need the calculating the surface area of the wood.


Importance of study of geometry


Geometry is considered the important field of study, because it has many applications in daily life .for example, a sport car move in a circular path and it applies the concepts of geometry. Stairs are made in the homes in consideration to angle of geometer and stairs and designed to 90 degree. When you throw a round ball in a round basket ball, it is also an application of geometry .Moreover, geometry is widely used the field of many ways such as architecture, decorators, engineers etc. In the architecture for building design and map marking, in addition, geometrical shapes are circle, rectangle, polygon, square, are used in the artists. The most interesting example is the nature of speaks of geometry and you can shapes in all things or nature.

I have recently faced lot of problem while learning difference of two squares formula, But thank to online resources of math which helped me to learn myself easily on net.

In daily life there is a lot of use of geometry by Architects, Decorates,

Engineers and many other professionals in determining distances, volume, angles , areas etc and it helps in understanding the proportion of thing in the universe. There is a wide use of geometry in textile and fashion designing and countless other areas.

Geometry is used because we need to help us the house hold tasks like putting carpet in the room ,if you need to know that the shape of the room is and then you need to know the area formula for that the shape so therefore it  is used in the way.

Geometry is at work everywhere you go. Without geometry, we would not be able to build things, manufacture things or play sports with must success. Geometry not only makes in every day life possible, it makes them easier by providing us with an exact science to calculate measurement of shape.

Thursday, April 4, 2013

Geometry Theorem List

Geometry is the study of shapes and configurations. It attempt to understand and classify spaces in various mathematical contexts. For a space with lot of symmetries the study naturally focuses on properties which are invariant (remaining the same) under the symmetries. Other type of geometry-In general, any mathematical construction which has a notion of curvature falls under the study of geometry.

I like to share this Area of Triangles with you all through my article.

Examples of Geometry Theorem List


Differential geometry: which is the  natural extension of calculus and linear algebra and is known simplest form of vector calculus
Algebraic geometry: This studies objects defined by polynomial equations. This is vital to recent solution is  many difficult problem in number theory, such as the finiteness of solutions to the polynomial equations considered in Fermat's Last Theorem.
Semi-Riemannian geometry: which Einstein is used to study the four dimensional geometry of space and time.
Simplistic geometry: which originated with the study of the evolution of simple mechanical systems, but now pervades all aspects of theoretical physics.



Please express your views of this topic Volume Calculator by commenting on blog.

Lines of Geometry Theorem List


Lines  A line is one of the basic terms in geometry. We may think of a line is a "straight" line that we might draw with a ruler on a piece of paper, except that in geometry, a line extends forever in both directions. We write the name of  line  is passing through two different points A and B as "line AB" or as the two-headed arrow over AB signifying a line passing through points A and B. Points-A point is one of the basic terms in geometry. We may think of a point as a "dot" on a piece of paper. We identify this point with a number or letter. A point has no length or width. It just specifies an exact location. Intersection The term intersect is used when lines, rays, line segments or figures meet, that is, they share a common point. The point they share is called the point of intersection. We say that these figures intersect.

Solving Geometry Examples

Introduction of solving geometry examples:-

In geometry, we deal with the problems in triangles, circle, and square are solved using certain formulas is called Solving geometry examples. Here the formulas are very important to solve any examples problems. From this we can find area, volume, and perimeter etc.

To solving the geometry examples are,

Area of triangle formula =½(bh)

Area of square formula = a²

Area of circle formula = πr²

Area of rectangle formula = l*b


Examples for solving Geometry Problems


Example 1:

Find the area of square given that a= 35?

Solution:

Area of square = a²

= 35²  (calculate the area square )

= 1225

Area of square =1225

Example 2:

Find the area of triangle given that base = 21, height = 18?

Solution:

Area of triangle = ½(bh)

= ½(21*18) ( multiply the values)

= ½(378)

= 189

Area of triangle = 189

Example 3:

Find the area circle given that diameter = 26?

Solution:

Area of circle = πr²

But the radius is not given here; we have found the radius from diameter.

Radius = diameter /2

Radius = 26/2 ( dived the values)

Radius = 13

Area of circle = πr²

Area of circle = π*13²

=3.14*169 ( multiply the values)

Area of circle = 530.66sq.m.

I have recently faced lot of problem while learning Volume Calculator, But thank to online resources of math which helped me to learn myself easily on net.

Examples for solving Geometry Problems


Example 4:

Find the length of the rectangle given that area = 155 and base = 23?

Solution:

Area of rectangle = l*b

155 = l*23

l= 155/23

l = 6.7

l = 7

Example 5:

Find the dimension of 3rd side. When the perimeter is fifty and the two sides are same. The equal sides have five greater the 3rd side?

Solution:

Let us assume s be the unknown length of the triangle, then

We know that perimeter of triangle is

P = a+b+c

50 = s + s + s+ 5

50 = 3s + 5

Then solving  the value of variable s, we get
3s = 50 – 5
3s = 45
s =15

The value of third side = 15 + 5 =20

The value of the third side is 20

Tuesday, April 2, 2013

Solve Online Geometry Problems

Introduction to solve geometry problems online:

Geometry is one of the important topics in math which includes the study of all kinds of shapes and their properties. Points is one of the basics of geometry. There is no length, height or width.  Points have  four main properties that is exact location, dot, node and ordered pair. Geometry deals with plane geometry, solid geometry. Let us see about solve online geometry word problems.


Solve the geometry word problems online


Q 1: A triangle has a perimeter of 78. If 2 of its sides are equal and the third side is 6 more than the equal sides, what is the length of the third side?

Sol:

Step 1: Let us take Y is the length of the equal sides of triangle

So, the third side of the triangle is Y+6

Step 2:  Perimeter is derived by sum of three sides on triangle.

Step 3: To Plug in the values of above problems.

78= Y+Y+(Y + 6)

Then Combine the similar terms
78 = 3y + 6

3y = 78 – 6
3y = 72
y =24

That is the third side is 6 more than the equal sides.

So, the length of third side = 24 + 6 =30

I have recently faced lot of problem while learning Geometry Pythagorean Theorem, But thank to online resources of math which helped me to learn myself easily on net.

More examples to solve geometry word problems online


Q 2 : The perimeter of a rectangle is 1000 meters and its length L is 6 times its width W. Find W and L, and the area of the rectangle.

Sol:

Step 1: Using formula for perimeter of the rectangle.

2 L + 2 W = 1000 ----------- (1)

Step 2: Here the length (L) of rectangle is 6 times more than its width (W)

L = 6 W --------------------- (2)

Step 3: To plug L value in the equation (1).

2(6 W) + 2 W = 1000

Step 4: 12W+W=1000
14 W = 1000

Step 5: Now Find the value of W.

W = 1000 / 14

W = 71.42 meters

Step 6: To plug W value in to equation (2)
L = 6 W

= 6 * 71.42 meters

= 428.57 meters

Step 7:  Area of a rectangle = L * W

L * W = 428.57 * 71.42

= 30608.57 meters 2.

Monday, April 1, 2013

Solving Geometry Homework

Geometry:

Geometry is the main branches of mathematics. The geometry different types of size, shape, relative position of figures, and the properties of space. Geometry is one of the oldest sciences. The word ‘Geometry’ means learn of properties of figures and shapes and the relationship between them. A system of geometry is called Euclidean geometry. A solid geometry classified to a set of problems or objects.

(Source-Wikipedia)


Solving homework 1:


To calculate the area of a cylinder given that its radius is 8 and its length or height is 6.

Solution:

The surface area of this cylinder is 2 `pi` RL+2 `pi` R2.

= 2*3.14*8*6+2*3.14*82=703.717

The surface are of a cylinder is 703.717

Solving homework 2:

To calculate the perimeter of a rectangle given that its width is 7 and its height is 6.

Solution:

The perimeter is the distance around the rectangle, or h+w+h+w or 2h+2w.

Perimeter = 2 * 6 + 2 * 7 = 26

The perimeter of rectangle is 26


Solving homework 3:


To calculate the area of a rectangle given that its width is 8 and its height is 7.

Solution:

The area enclosed by rectangle, is h × w

Area = 7 * 8 = 56

The area of a rectangle is 56

Solving homework 4:

To calculate the area of a right triangle given that its base is 10 and its height is 8.

Solution:

The area of a right triangle is 1/2bh

Area = ½ * 10 * 8 = 40

The area of a rectangle is 56

Solving homework 5:

To calculate the side of a square given that its area is 8.

Solution:

The area is the amount of space enclosed by the square is S × S or Area=S2.

Solve this equation for S to get that or S=Area1/2 Side = area ½=81/2=2.82843

The side of this square has a length of 2.82843

Solving homework 6:

To calculate the area of  rhombus whose diagonal lengths are  8 and 12.

Solution:

The area of the rhombus= 1/2  x length of the diagonal 1 x length of the diagonal 2 .

=1/2 x 8 x 12

The area of the rhombus = 48